Schonendes TLP-Fügeverfahren bei Prozesstemperaturen unter 150°C durch Anwendung ternärer Systeme (LowTemp-TLP)
Das Fügeverfahren Transient-Liquid-Phase- (TLP-) Bonding kommt aus dem Bereich der metallischen Niedertemperaturverbindungstechnik und kombiniert damit die positiven Eigenschaften von metallischen Verbindungen, wie beispielsweise mechanische Stabilität und Leitfähigkeit mit dem Vorteil niedriger Prozesstemperaturen. Dies ist möglich, da im Prozess durch Diffusion aus einer niedrig- und einer hochschmelzenden Phase eine temperaturbeständige intermetallische Phase entsteht. In der Kombination Silber (Ag) und Zinn (Sn) kann so beispielsweise bei einer Prozesstemperatur von 250 °C eine Verbindung erzeugt werden, die bis über 400 °C stabil ist. Im Vergleich zu anderen temperaturstabilen Verfahren, wie eutektischem Bonden, AuSn-Löten oder auch Glaslöten sind die TLP-Verfahren daher im Vorteil, da die Differenz zur Raumtemperatur nach dem Prozess und damit auch der thermo-mechanische Stress geringer ist.
Genau dieses Verfahren mit dem binären AgSn-System wurde im IGF-Projekt „Sensor-TLP“ (18476N) bereits durch Hahn-Schickard und IMTEK grundlegend erarbeitet. Dabei zeigten sich allerdings aufgrund der Prozess- und Verbindungseigenschaften die Defizite.
Abschließend kann festgehalten werden, dass, durch die erfolgreiche Abscheidung der TLP-Materialsysteme in der erforderlichen Qualität, durch die Planung, Durchführung, Auswertung und Charakterisierung Proben aus den unterschiedlichen Versuchsreihen sowie die abschließende Verifikation der Versuchsergebnisse anhand von zwei Funktionsmustern, die im Projektantrag gesteckten Ziele erfolgreich umgesetzt werden konnten.
ACKNOWLEDGEMENT
Das IGF-Vorhaben 01IF21868N der Forschungsvereinigungen Hahn-Schickard-Gesellschaft und Edelmetalle und Metallchemie wurde über das DLR im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.
Innovation im Zinkdruckguss – Erzeugung spiegelglänzender Gussoberflächendurch trennmittelfreie Fertigung (GlossyCast)
Ziel des Forschungsvorhabens war die Entwicklung und Erprobung einer neuartigen, dauerhaft beständigen Beschichtung für Zinkdruckgusswerkzeuge. Diese sollte die Herstellung maßhaltiger Zinkdruckgussbauteile mit hoher Oberflächenqualität ohne jeglichen Trennmitteleinsatz gestatten. Neben reduzierter Taktzeiten im Zinkdruckgießprozesses sollen aufgrund der gesteigerten Oberflächenqualität der bauteile bei der Nachbearbeitung und Beschichtung Material und Kosten eingespart werden.
Am Fraunhofer IFAM wurden plasmapolymere Beschichtungen für Zinkdruckgusswerkzeige weiterentwickelt und optimiert, wobei neben den trennenden Eigenschaften insbesondere die mechanische und thermische Stabilität der Beschichtungen im Fokus stand. Zusammenfassend zeigten die Laboruntersuchungen, dass harte und dünne Beschichtungen die beste Eignung für die beabsichtigte Anwendung aufweisen.
Die trennmittelfrei hergestellten Zinkdruckgussbauteile wurden am fem hinsichtlich ihrer Beschichtbarkeit und Korrosionseigenschaften sowie einer Veränderung des Nachbearbeitungsaufwandes im Vergleich zu konventionell hergestellten Bauteilen untersucht.
Die Weiterentwicklung des bisherigen Verfahrens führt zu Bauteilen mit vergleichbaren bzw. verbesserten Eigenschaften bei gleichzeitig verkürzten Gesamtprozesszeiten sowie einer deutlichen Einsparung von Materialien und Kosten. Das Verfahren kann bei der Herstellung von Zinkdruckgussbauteilen für dekorative und technische Anwendungen eingesetzt werden.
Die im Rahmen des AiF-Projektes „GlossyCast“ gewonnenen Erkenntnisse zeigen, dass eine trennmittelfreie Serienfertigung von Zinkdruckgussteilen bei der Verwendung von plasmapolymeren Beschichtungen und einer passenden Formauslegung problemlos möglich ist. Das hier erarbeitete Fertigungskonzept birgt somit enorme wirtschaftliche, technologische und auch ökologische Vorteile, welche sowohl der Zinkdruckguss- als auch der Galvanotechnikbranche zukünftig dabei helfen kann, im internationalen Wettbewerb zu bestehen.
ACKNOWLEDGEMENT
Das Vorhaben 01F21279 N wurde über das DLR im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.
Entwicklung von Raumtemperatur-Natrium-Schwefel-Batterien auf Basis von Polyacrylnitril-Schwefel-Kathoden (NaS-Zelle)
Im Kontext der Energiewende nehmen Energiespeicher eine zentrale Position ein. Mit der steigenden Anzahl mobiler Anwendungen wächst auch der Bedarf an stationären Energiespeichern, insbesondere für die Zwischenspeicherung von aus erneuerbaren Energien erzeugtem Strom. Eine besonders effiziente Methode zur Energiespeicherung stellen elektrochemische Energiespeicher dar. Derzeit dominieren Lithium-Ionen- Batterien den Markt der elektrochemischen Energiespeicher. Jedoch ist die begrenzte globale Verfügbarkeit von Lithium, Nickel und Kobalt, die als essenzielle Bestandteile der Kathode fungieren, ein erheblicher Nachteil.
In den letzten Jahren haben sich die Forschungsaktivitäten auf alternative Batteriesysteme erheblich intensiviert. Vielversprechende Kandidaten sind Natrium-Ionen-Batterien und Natrium-Schwefel-Batterien, da Natrium in der Erdkruste etwa 440-mal häufiger vorkommt als Lithium. Zwar weisen Natrium-Ionen-Batterien geringere Energiedichten im Vergleich zu Lithium-Ionen-Batterien auf. Jedoch können durch die Verwendung von Schwefel als Kathodenmaterial deutlich höhere Energiedichten erreicht werden. Schwefel ist darüber hinaus weitreichend verfügbar, kostengünstig und besitzt weder toxische noch umweltgefährdende Eigenschaften.
Erste Ansätze zur Entwicklung von Natrium-Schwefel-Batterien gibt es bereits seit Mitte der 1970er Jahre. Das hierbei ent-
wickelte Hochtemperaturverfahren, bei dem Natrium und Schwefel bei 350 °C im flüssigen Aggregatzustand vorliegen, bringt allerdings hohe Anforderungen an die verwendeten Materialien in der Zelle und im Gehäuse mit sich. Neuere Ansätze fokussieren sich auf Raumtemperaturzellen, ähnlich den Lithium-Schwefel-Batterien. Dennoch bestehen dabei ähnliche Herausforderungen. So treten im Zellbetrieb Volumenänderungen an der Kathode und der Anode auf, Polysulfide, die während der Zellreaktion gebildet werden, gehen unerwünschte Nebenreaktionen mit der Anode ein und Schwefel bzw. Natriumsulfid muss elektrisch leitfähig bleiben, um die Reversibilität der Zellreaktion zu gewährleisten.
Zur Bewältigung der bestehenden Herausforderungen konzentriert sich dieses Projekt auf die Entwicklung von Raumtemperatur-Natrium-Schwefel-Batterien, die auf Polyacrylnitril-Schwefel-Kathoden basieren. Ein spezieller Temperaturprozess wird verwendet, um Schwefel in das Polyacrylnitril einzubetten. Dies führt zur Umwandlung des Polyacrylnitrils in eine elektrisch leitfähige Matrix mit hoher Oberfläche, in der der Schwefel fest integriert ist. Dies ermöglicht die elektrische Anbindung des Schwefels und bildet gleichzeitig ein elastisches Gerüst, das die Volumenänderung des Schwefels kompensiert und die Abwanderung von Polysulfide minimiert.
Für die Natriumanode werden galvanisch hergestellte Natriumschichten verwendet. Das galvanische Verfahren ermöglicht die präzise Herstellung dünner Natriumschichten mit einstellbarer Morphologie, die mechanisch schwer darstellbar sind. Auf diese Weise lässt sich die in der Zelle vorhandene Natriummenge gezielt einstellen und es wird ein mit Sicherheitsrisiken verbundener Natriumüberschuss vermieden. Ziel des Projekts ist die Demonstration einer funktionsfähigen Zelle mit hoher Kapazität und guter Zyklenstabilität.
Acknowledgement
Das IGF-Vorhaben 01IF23177N wird im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.
Simulation des Schmelzbads bei der additiven Fertigung von Metallteilen
Im Rahmen des Forschungsprojektes wurden bedeutende Fortschritte in der pulverbettbasierten additiven Fertigung mittels Laser erzielt. Die Integration dieser Technologie in industrielle Produktionsprozesse ist ein Zeugnis ihrer fortschreitenden Reife. Parallel dazu konzentriert sich die Forschung auf die wissenschaftliche Durchdringung des Verfahrens. Das Projekt fokussierte sich speziell auf die Simulation des Schmelzbades und dessen experimentelle Validierung. Untersuchungsgegenstände waren dabei die verbreiteten Materialien Stahl (316L), Aluminium (AlSi10Mg) und Titan (TiAl6V4).
Die Simulationsmodelle basierten auf thermophysikalischen Materialparametern und wurden individuell angepasst. Das vom Fraunhofer IWM entwickelte Ausgangsmodell wurde hierfür weiterentwickelt und optimiert. Simulationsergebnisse wurden durch experimentelle Untersuchungen validiert und mit den Vorhersagen der kommerziellen Simulationssoftware Flow3D verglichen.
Das Projektziel bestand darin, ein detailliertes Prozessverständnis zu entwickeln, um die limitierten Beobachtungsmöglichkeiten der hohen Verfahrensgeschwindigkeiten zu kompensieren. Langfristig soll dieses Wissen dazu beitragen, den Einfluss spezifischer Materialparameter auf das Fertigungsergebnis zu ermitteln und so die Entwicklung maßgeschneiderter Materialien zu erleichtern.
Acknowledgement
Das IGF-Vorhaben 21470 N der Forschungsvereinigung Edelmetalle + Metallchemie wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.
Entwicklung und Fertigung von aluminiumbasierten Bipolarplatten mit Anwendung in NT-PEM-Brennstoffzellen (AluBiPEM)
Zur flächendeckenden Einführung der Brennstoffzellentechnologie bedarf es sowohl Produkt- als auch Prozessinnovationen, die auf eine Steigerung der Produktperformance und/oder auf eine Reduktion der Produktionskosten abzielen. Zentrale Zielstellung des Forschungsprojekts AluBiPEM ist daher der Einsatz von Aluminium als Substratwerkstoff für die Schlüsselkomponente Bipolarplatte (BPP), anstelle von Edelstahl, dem aktuellen Stand der Technik.
Der Einsatz von Aluminium als BPP-Material ermöglicht es allein aus Sicht der Materialherstellung Treibhausgasemissionen stark zu reduzieren. Weiterhin besitzt Aluminium materialintrinsische Vorteile – 3x geringere Dichte, 4x höhere Wärmeleitfähigkeit, 27x höhere elektrische Leitfähigkeit –, die zu einer Verbesserung der Produktperformance führen. Daneben stellt das vorliegende Forschungsvorhaben die Industrialisierung und eine Reduktion der Produktionskosten in Aussicht. Die Industrialisierung der BPP-Fertigung wird durch die vier zentralen Verfahren Kalanderprägen, Beschichten, Laserstrukturieren und Galvanisieren realisiert. Alle vier Fertigungstechnologien weisen bereits einen hohen technologischen Reifegrad (8–9) auf und sind industriell etabliert. Sie bieten darüber hinaus die Möglichkeit, neben einer batch-basierten Sheet-to-Sheet Fertigung für mittlere Stückzahlen Skaleneffekte für die industrielle Massenfertigung durch einen kontinuierlichen Rolle-zu-Rolle-Prozess zu erzielen, der möglicherweise erst mit dem Substrat Aluminium zu realisieren ist.
Im Projekt fungiert die Fa. Unicorn Engineering als Verbundkoordinator. Weitere Verbundpartner sind neben dem fem das ZSW, Fraunhofer ILT, SB Brutschin GmbH, Eloxal Höfler GmbH, Pulsar Photonics GmbH und Gramm Technik GmbH.
Im Teilvorhaben des fem ist die zentrale Aufgabe die Entwicklung eines galvanischen Schichtaufbaus für die elektrische Kontaktierung der Bipolarplatte mit der Gasdiffusionslage. Die Entwicklung eines korrosionsbeständigen neuartigen galvanischen Schichtaufbaus mit möglichst geringen Kontaktwiderstand steht hier im Fokus. Zudem erfolgt am fem die umfangreiche Charakterisierung der Substratmaterialien und Schichtsysteme.
ACKNOWLEDGEMENT
Das Verbundprojekt wird im Rahmen des 7. Energie Forschungsprogramms vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Die Förderrichtlinie wird durch den Projektträger Jülich (PtJ) umgesetzt.
Anode Plasma Ionized Magnetron Sputtering (APiMS)
An efficient PVD sputtering process is being investigated and developed in the Invest BW project „APiMS“, which should lead to a reduction in coating time and thus to electricity and CO₂ savings.
PVD (Physical Vapor Deposition) processes are among the most economical, environmentally friendly surface coating technologies. Although PVD is a proven technology, opportunities for further technological improvements are constantly being discovered. The project idea described in this research project combines recently discovered possibilities of additional plasma generation at an anode with the PVD process of cathode sputtering (also known as magnetron sputtering) for technological applications. This achieves a significantly higher ionization of both the working gas and the sputtered material. This leads to a more efficient flow of the sputtered species to the component to be coated, to better coating properties and thus to a significant reduction in coating time. The ecological benefits of this technological improvement lead to a significant reduction in electricity consumption and thus to CO₂ savings.
The higher ionization in the vacuum chamber will lead to an increase in coating adhesion and coating hardness. This improves the mechanical properties of the coating and thus the service life of coated tools or the wear properties of coated components.
Acknowledgement
The Invest BW project BW1 5038/02 of the fem Forschungsinstitut is funded by the Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg.
Calcium sulphur: Innovative material development for more sustainable batteries (CaSino)
The energy transition will only be successful if, in addition to the generation of electricity from renewable energy sources, the development of cost- and resource-efficient energy storage systems is also driven forward. Battery cells with the unique material pairing of calcium and sulphur are a promising candidate for the successor to the lithium-ion batteries currently in use: They reduce Germany's dependence on materials, minimise political, ecological and economic risks and offer enormous technological potential due to their low cost, good availability and high energy density.
Dieses Potential auszuschöpfen ist Ziel des FuE-Projekts “Calcium-Schwefel: Innovative Materialentwicklung für nachhaltigere Batterien”, kurz CaSino. Zu den Forschungspartnern zählen neben dem fem, das für die galvanische Herstellung der Calcium-Anoden zuständig ist, das KIT (elektrochemische Charakterisierung des Ca-Batterie-Elektrolyten), das DLR (Herstellung der Schwefel-Kathoden), das HIU (Modellierung der Prozesse in der Calcium-Schwefel-Vollzelle) und das NMI (Grenzflächenmorphologie und Strukturaufklärung). Die EuRA AG übernimmt die ökologische Bewertung der einzelnen Batteriekomponenten.
Together with the industrial partners Alantum, Varta, Custom Cells, Accurec and IoLiTec, a high-performance demonstrator of the calcium-sulphur battery cell is to be developed by 2025.
ACKNOWLEDGEMENT
The project is being funded by the Federal Ministry of Education and Research (BMBF) with around 3 million euros as part of the "Battery 2020 Transfer" programme.