Metallography

Metallography

Comprehensive and diverse testing methods are available for metallurgical analyses and the investigation of material properties. Whether it is damage to components, the development of new products or quality assurance issues: at fem, the necessary analyses of components and materials are carried out quickly, reliably and to the highest quality.

Our testing capabilities include tensile and compression tests on standard samples and components, hardness measurements using all common test methods, chemical analyses, determination of microstructural characteristics using quantitative metallography, thermal analyses (DTA, DSC, DIL), testing of dental materials, coating characterisation and much more. Almost 200 test methods are accredited in accordance with DIN EN ISO/IEC 17025:2018.

REM Rasterelektronenmikroskopie mit EDX und EBSD

  • High-resolution SEM and STEM
  • Spatially resolved element analysis
  • Korrelative Mikroskopie
  • Analysis of air- or moisture-sensitive samples
  • Preparation of (S)TEM lamellas
  • Preparation of FIB cross-sections
  • FIB-REM tomography
  • Energy dispersive X-ray spectrometry (EDX)
  • Wavelength dispersive X-ray spectrometry (WDX)
  • Electron backscatter diffraction (EBSD)
  • ESB (Energy Selective Backscattered)
FIB

The scanning electron microscopes (SEM) equipped with a field emission cathode enable material analyses in the nanometre range. Images with the secondary electron (SE) detectors are topography or edge-emphasised, while images with the backscattered electron (RE) detector show the material or channeling contrast. Detectors for energy or wavelength dispersive X-ray spectrometry (EDX, WDX) are available for spatially resolved element analysis. The crystallographic properties can be analysed using electron backscatter diffraction (EBSD). EBSD provides information on phases, grain sizes and crystal orientations. The focussed ion beam (FIB) enables targeted material removal. With FIB, cross-sections in surfaces can be prepared with high spatial resolution and analysed in situ by electron microscopy. This method is therefore suitable for analysing layer systems, defects or corrosion, for example.

rem4
EDX

FIB Focused Ion Beam

  • High-resolution SEM and STEM
  • Spatially resolved element analysis
  • Korrelative Mikroskopie
  • Analysis of air- or moisture-sensitive samples
  • Preparation of (S)TEM lamellas
  • Preparation of FIB cross-sections
  • FIB-REM tomography
  • Energy dispersive X-ray spectrometry (EDX)
  • Wavelength dispersive X-ray spectrometry (WDX)
  • Electron backscatter diffraction (EBSD)
  • ESB (Energy Selective Backscattered)
fib
Corrosion investigation on the FIB cross-section

The scanning electron microscopes (SEM) equipped with a field emission cathode enable material analyses in the nanometre range. Images with the secondary electron (SE) detectors are topography or edge-emphasised, while images with the backscattered electron (RE) detector show the material or channeling contrast. Detectors for energy or wavelength dispersive X-ray spectrometry (EDX, WDX) are available for spatially resolved element analysis. The crystallographic properties can be analysed using electron backscatter diffraction (EBSD). EBSD provides information on phases, grain sizes and crystal orientations. The focussed ion beam (FIB) enables targeted material removal. With FIB, cross-sections in surfaces can be prepared with high spatial resolution and analysed in situ by electron microscopy. This method is therefore suitable for analysing layer systems, defects or corrosion, for example.

rem4
EDX

Ionenstrahlpräparation

Hochauflösende Strukturuntersuchungen und orientierungsmikroskopische Methoden im Bereich der Rasterelektronenmikroskopie erfordern verformungs- und spannungsfreie Oberflächen. Eine konventionelle metallographische Präparation ist aufgrund der eingebrachten mechanischen Kräfte unzureichend. Der flächige Beschuss mit Argon-Ionenstrahlen ist eine technisch anspruchsvolle Methode zur verformungsfreien Präparation von Oberflächen. 

Das Prinzip ist in der folgenden Abbildung dargestellt: Die rotierende Probe wird mit zwei Ionenstrahlen unter einem sehr flachen Einfallswinkel beschossen. Beim Auftreffen der Argon-Ionen auf die Probenoberfläche wird durch deren kinetische Energie Material abgetragen.

Ionenstrahlpräparation