KupferDigital: Datenökosystem für die digitale Materialforschung auf Basis Ontologie-basierter digitaler Repräsentationen von Kupfer und Kupferlegierungen

Der Lebenslauf von Kupfer wird digital – für innovatives Materialdesign bis zum Recycling

Kern des Projektes KupferDigital ist es, einen Demonstrator für ein digitales Datenökosystem zu erstellen, der der Digitalisierung der Materialforschung und der metallverarbeitenden Industrie als zukunftsfähige Plattform zur Verfügung stehen soll. Das Projekt KupferDigital entwickelt Methoden und Konzepte, um den Lebenszyklus am Beispiel von Kupfer – von der Erzgewinnung bis zum Recycling – digital zu erfassen. Grundlage ist die Entwicklung sogenannter Ontologien. Diese können als eine Art Wissensnetz verstanden werden. Sie dienen als gemeinsame Standards für die Beschreibung von Werkstoffen und technischen Vorgängen. Sie helfen bei der digitalen Erfassung von Prozessschritten sowie von Materialeigenschaften. Parallel dazu werden Konzepte für Datenstrukturen, die Speicherung und den Austausch von Werkstoffdaten über neu zu definierende Schnittstellen erarbeitet.

Über die Bereitstellung digitalisierter Lebenszyklen von Kupfer wird die Industrie bei der Produktentwicklung befähigt, neue Werkstoffentwicklungen frühzeitig zu bewerten, beispielsweise unter dem Gesichtspunkt der Nachhaltigkeit. Kupfer kommt hier eine aktuelle Bedeutung zu, weil es für die digitale Transformation sowie die Energie- und Mobilitätswende von fundamentaler Bedeutung ist und somit von hohem gesellschaftlichem Wert. Die Projektziele sind sowohl auf weitere metallische Struktur- und Funktionswerkstoffe als auch auf andere Industriebereiche übertragbar. Die Projektergebnisse werden im Rahmen der Aktivitäten der Innovationsplattform MaterialDigital allen Interessierten zur Verfügung gestellt.

Acknowledgement

Das Vorhaben 13XP5119A  wird im Rahmen der Innovationsplattform MaterialDigital vom Bundesministerium für Bildung und Forschung gefördert.

Virtuelles Design additiv gefertigter Aluminium-Leichtbaukomponenten durch die Vernetzung und Analyse rückverfolgbarer Daten in einem dezentralen Datenraum

Background

Vom Rohmaterial zum Bauteil durchlaufen die Zwischenprodukte meist mehrere Unternehmen. In der additiven Fertigung von Metallen finden Pulverherstellung, 3D Druck, Wärmebehandlung, Nachbearbeitung und Montage typischerweise an verschiedenen Produktionsstädten statt, wobei alle Bearbeitungsschritte zur finalen Festigkeit des Bauteils beitragen bzw. diese beeinflussen. Für eine maximale Ausschöpfung des Leichtbaupotenzials bedarf es einer möglichst genauen Kenntnis des Werkstoffs, des Bauteils und des Fertigungsprozesses um die erforderlichen Produkteigenschaften zu erhalten. 

Für belastbare, geprüfte und nachvollziehbare Daten muss eine möglichst umfangreiche Datenbasis aus den Informationen der einzelnen Fertigungsschritte aufgebaut werden, hierzu ist der Datenaustausch zwischen allen Arbeitsschritten entlang der Wertschöpfungskette nötig. Aktuell sind die teilweise sehr heterogenen Daten weder interoperabel, noch unternehmensübergreifend verfügbar.

GOALS

Vor diesem Hintergrund ergeben sich wesentliche Ziele:

1. Ausschöpfung des zusätzlichen Leichtbaupotenzials durch effiziente und prozessangepasste Topologieoptimierung für die additive Fertigung

2. Nutzung und Weiterentwicklung von Werkzeugen zur digitalen Modellierung von Wertschöpfungs- und CAE-Ketten und zur interoperablen Beschreibung von Daten und Domänenwissen

3. Unternehmensübergreifende Verwertung dezentral verwalteter Werkstoff-, Werkstoffprozess und Bauteildaten unter Wahrung höchster Datensouveränitätsstandards

4. Bereitstellung detaillierter, vielfältiger Werkstoff- und Prozessdaten für AM-Leichtbauwerkstoffe in einer skalierbaren Datenraumarchitektur

5. Übertragbare Schnittstellenlösung zur Integration von Daten und Analyseergebnissen aus dem dezentralen Datenraum in den Designprozess von Leichtbaukomponenten

Arbeiten am fem

Das fem war für die Bereitstellung von Prozessdaten für den Datenraum im Projekt verantwortlich. Diese wurden durch die additive Fertigung von Probekörper und Leichtbaudemonstratoren aus AlSi10Mg, deren Untersuchung (durch Computertomographie und Metallographie) und Prozessmonitoring während deren Herstellung (Pyrometrie zur Aufnahme der Emissivität des Schmelzbades) generiert. Die hergestellten Bauteile wurden anschließend ans IWM zur mechanischen Prüfung weitergeleitet. Zur Herstellung der Probekörper wurden verschiedene Geometrien festgelegt: ein Testteil (zur Parametervariation und -optimierung der Dichte und Oberfläche), eine Zugprobe, ein Quader und ein Stab zum Abdrehen. Alle Bauteile wurden mit 30 µm Schichtstärke hergestellt. Das Testteil wurde am fem entworfen und weist unterschiedliche Wandstärken, geneigte und gewölbte Flächen auf. Besagte Geometrie wurde für eine DOE-Parametervariation zur Optimierung der Dichte und Oberflächenqualität eingesetzt. Laserleistung und -geschwindigkeit (sowohl für die Schraffur als auch für die Konturen), und Hatch Distance wurden variiert (Abb. 1).

Die Leichtbaudemonstratoren wurden in zwei (vom EMI bereitgestellten) Versionen additiv gefertigt: 1. Generation, Topologieoptimierung nach Stand der Technik, und 2. Generation, welche mit der prozessspezifischen Topologieoptimierung mit Schnittstelle zum Materialdatenraum erarbeitet wurde. Durch die Optimierung der Ausrichtung (von 90 ° auf 96 °) und der Geometrie wurde im Vergleich zum Leichtbauteil 1.Gen das Stützenvolumen um 67 % reduziert (Abb. 2). Dies ergab eine Verbesserung der Oberflächenqualität, welche von den zu entfernenden Stützen immer beeinträchtigt wird.

Die Prozessüberwachung des Schmelzbades mittels Hochgeschwindigkeitspyrometrie wurde bei der Herstellung des Leichtbauteildemonstrators eingesetzt. Dadurch sind Überhitzungen (Stellen der Schraffur, wo die Emissivität erhöhte Werte aufweist) an einzelnen Schichten zu erkennen (Abb. 3). Eine filtrierte 3D Darstellung der Daten (wo die geringeren Emissivitäten ausgeblendet wurden) zeigt, dass der untere Bereich des Bauteils in Durchschnitt eine höhere Anzahl an Überhitzungen im Vergleich zum oberen aufweist (Abb. 3). Dies ist auf den Einfluss der Pulverbettheizung (300 °C) zurückzuführen, die sich auf die Temperatur des unteren Bereichs des Bauteils stärker auswirkt. 

Die Bauteile wurden durch CT und Metallographie (Gefüge, Porositätsbestimmung mittels quantitativer Bildanalyse) untersucht. Die generierten Werkstoff-, Werkstoffprozess- und Bauteildaten wurden zur Aufbereitung für den Datenraum zur Verfügung gestellt.

Acknowledgement

Wir danken dem Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg für die finanzielle Unterstützung des vorliegenden Projekts.