Entwicklung und Fertigung von aluminiumbasierten Bipolarplatten mit Anwendung in NT-PEM-Brennstoffzellen (AluBiPEM)

Zur flächendeckenden Einführung der Brennstoffzellentechnologie bedarf es sowohl Produkt- als auch Prozessinnovationen, die auf eine Steigerung der Produktperformance und/oder auf eine Reduktion der Produktionskosten abzielen. Zentrale Zielstellung des Forschungsprojekts AluBiPEM ist daher der Einsatz von Aluminium als Substratwerkstoff für die Schlüsselkomponente Bipolarplatte (BPP), anstelle von Edelstahl, dem aktuellen Stand der Technik.

Der Einsatz von Aluminium als BPP-Material ermöglicht es allein aus Sicht der Materialherstellung Treibhausgasemissionen stark zu reduzieren. Weiterhin besitzt Aluminium materialintrinsische Vorteile – 3x geringere Dichte, 4x höhere Wärmeleitfähigkeit, 27x höhere elektrische Leitfähigkeit –, die zu einer Verbesserung der Produktperformance führen. Daneben stellt das vorliegende Forschungsvorhaben die Industrialisierung und eine Reduktion der Produktionskosten in Aussicht. Die Industrialisierung der BPP-Fertigung wird durch die vier zentralen Verfahren Kalanderprägen, Beschichten, Laserstrukturieren und Galvanisieren realisiert. Alle vier Fertigungstechnologien weisen bereits einen hohen technologischen Reifegrad (8–9) auf und sind industriell etabliert. Sie bieten darüber hinaus die Möglichkeit, neben einer batch-basierten Sheet-to-Sheet Fertigung für mittlere Stückzahlen Skaleneffekte für die industrielle Massenfertigung durch einen kontinuierlichen Rolle-zu-Rolle-Prozess zu erzielen, der möglicherweise erst mit dem Substrat Aluminium zu realisieren ist. 

Im Projekt fungiert die Fa. Unicorn Engineering als Verbundkoordinator. Weitere Verbundpartner sind neben dem fem das ZSW, Fraunhofer ILT, SB Brutschin GmbH, Eloxal Höfler GmbH, Pulsar Photonics GmbH und Gramm Technik GmbH.

Im Teilvorhaben des fem ist die zentrale Aufgabe die Entwicklung eines galvanischen Schichtaufbaus für die elektrische Kontaktierung der Bipolarplatte mit der Gasdiffusionslage. Die Entwicklung eines korrosionsbeständigen neuartigen galvanischen Schichtaufbaus mit möglichst geringen Kontaktwiderstand steht hier im Fokus. Zudem erfolgt am fem die umfangreiche Charakterisierung der Substratmaterialien und Schichtsysteme.

DANKSAGUNG

Das Verbundprojekt wird im Rahmen des 7. Energie Forschungsprogramms vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Die Förderrichtlinie wird durch den Projektträger Jülich (PtJ) umgesetzt.

Anoden-Plasma ionisiertes Magnetron-Sputtern (APiMS)

Im Invest BW-Forschungsvorhaben APiMS wird ein effizientes PVD-Sputter-Verfahrens erforscht und entwickelt, welches zur Verkürzung der Beschichtungsdauer und dadurch zur Strom- und CO₂-Einsparung führen soll. 

PVD (Physical Vapor Deposition) Verfahren zählen zu den ökonomischen, umweltfreundlichen Oberflächen-Beschichtungstechnologien. Obwohl PVD eine bewährte Technologie ist, werden immer wieder Möglichkeiten für weitere technologische Verbesserungen entdeckt. Die in diesem Forschungsvorhaben beschriebene Projektidee verbindet erst kürzlich für technologische Anwendungen entdeckte Möglichkeiten der zusätzlichen Plasmaerzeugung an einer Anode mit dem PVD-Verfahren der Kathodenzerstäubung, auch Magnetron-Sputtern genannt. Damit wird eine signifikant höhere Ionisierung sowohl des Arbeitsgases als auch des zerstäubten Materials erzielt. Dies führt zu einem effizienteren Fluss der Beschichtungsteilchen zum zu beschichtenden Bauteil, zu besseren Schichteigenschaften und folglich zu einer deutlichen Reduzierung der Beschichtungszeit. Der ökologische Nutzen dieser Technologieverbesserung führt zu einer signifikanten Verringerung des Stromverbrauchs und damit zur CO₂-Einsparung.

Die höhere Ionisierung in der Vakuumkammer wird zu einer Erhöhung der Schichthaftung und der Schichthärte führen. Dadurch werden die mechanischen Eigenschaften der Schicht und somit die Standzeit von beschichteten Werkzeugen oder die Verschleißeigenschaften von beschichteten Bauteilen verbessert.

Das Invest BW Forschungsvorhaben BW1 5038/02 des fem Forschungsinstitutes wird gefördert durch das Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg.

Calcium-Schwefel: Innovative Materialentwicklung für nachhaltigere Batterien (CaSino)  

Die Energiewende ist nur dann erfolgreich, wenn neben der Erzeugung von Strom aus erneuerbaren Energiequellen auch die die Entwicklung von kosten- und ressourceneffizienten Energiespeichern vorangetrieben wird. Batteriezellen mit der einzigartigen Materialpaarung aus Calcium und Schwefel sind ein aussichtsreicher Kandidat für die Nachfolge der derzeit üblichen Lithium-Ionen-Batterien: Sie reduzieren die Materialabhängigkeit Deutschlands, minimieren politische, ökologische und wirtschaftliche Risiken und bieten aufgrund geringer Kosten, guter Verfügbarkeit und hoher Energiedichte ein enormes technologisches Potential.

Dieses Potential auszuschöpfen ist Ziel des FuE-Projekts “Calcium-Schwefel: Innovative Materialentwicklung für nachhaltigere Batterien”, kurz CaSino. Zu den Forschungspartnern zählen neben dem fem, das für die galvanische Herstellung der Calcium-Anoden zuständig ist, das KIT (elektrochemische Charakterisierung des Ca-Batterie-Elektrolyten), das DLR (Herstellung der Schwefel-Kathoden), das HIU (Modellierung der Prozesse in der Calcium-Schwefel-Vollzelle) und das NMI (Grenzflächenmorphologie und Strukturaufklärung). Die EuRA AG übernimmt die ökologische Bewertung der einzelnen Batteriekomponenten.

Gemeinsam mit den Industriepartnern Alantum, Varta, Custom Cells, Accurec und IoLiTec soll bis 2025 ein leistungsfähiger Demonstrator der Calcium-Schwefel-Batteriezelle entstehen.

DANKSAGUNG

Das Projekt wird durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Bekanntmachung „Batterie 2020 Transfer“ mit ca. 3 Millionen Euro gefördert.

Entwicklung neuer Aktivlotlegierungen durch Ultraschall-Plasmaverdüsung für das Fügen von Keramik-Keramik- und Metall-Keramik-Verbunden

Verfügbare Aktivlotpasten basieren nahezu ausschließlich auf Silber- und Silber-Kupfer-Legierungen, wodurch die Temperaturstabilität der Verbunde begrenzt ist. Höhere Temperaturstabilitäten können mit auf Edelmetallen (Pd, Pt) basierenden Aktivloten erzielt werden; diese sind aber deutlich teurer. Es besteht daher ein Bedarf an neuartigen Aktivlotlegierungen, die stabile Verbunde für Anwendungstemperaturen von 1000 °C bis ca. 1200 °C ermöglichen. Neben dem Hauptinteresse der Realisierbarkeit entsprechender Verbunde ist auch die reine Metallisierung funktioneller keramischer Oberflächen für eine elektrische Kontaktierung von Interesse. 

Aktivlotpasten werden meist in geringen Mengen, jedoch in großer Vielfalt, spezialisiert und optimiert für definierte Anwendungsfälle, benötigt. Mit der Ultraschall-Plasmaverdüsung ist es möglich, kleine Chargengrößen sowie Legierungssysteme, die schmelzmetallurgisch schlecht oder gar nicht mischbar sind, zu realisieren. Hierzu sollen neue, in Grundlagen bereits bekannte Aktivlotsysteme, evaluiert, optimiert und angepasst werden. Zusätzlich zur Pulverherstellung ist die Abstimmung der Pasten auf den Aktivloteinsatz ein sehr wichtiger Aspekt. Für eine industrielle, automatisierte Applikation der Lotpasten mittels Siebdruck und Dispenstechnologie sind rheologische Eigenschaften und Feststoffgehalte anzupassen. Zudem muss eine zuverlässige Entbinderung im Vakuum möglich sein. Die Untersuchungen werden mittels statistischer Versuchsplanung (DOE) und multivariater Datenanalyse (MVDA) unterstützt, um eine hohe Effizienz in Bezug auf die zu untersuchende Vielfalt sowie eine höhere Aussagekraft der Ergebnisse zu gewährleisten.

Ziel des Forschungsprojekts ist die Entwicklung temperaturstabiler und nicht auf Edelmetallen basierender Aktivlotlegierungen, die Pulverherstellung mittels Ultraschall-Plasmaverdüsung sowie die Optimierung von Aktivlotpasten. Die Aktivlottechnologie ermöglicht die Realisierung von Metall-Keramik-Verbunden in nur wenigen Prozessschritten, da eine direkte Benetzung keramischer Oberflächen möglich ist. Die Applikation dieser Lote als Pulver bzw. Pasten bringt im Vergleich zu Formteilen (Draht, Folie) Vorteile in der automatisierten Anwendbarkeit (Siebdruck, Dispensen) mit sich und minimiert Materialverluste. 

Das IGF-Vorhaben 22117 BG der Forschungsvereinigung Verein für das Forschungsinstitut für Edelmetalle und Metallchemie (fem) wird über die AIF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

KupferDigital: Datenökosystem für die digitale Materialforschung auf Basis Ontologie-basierter digitaler Repräsentationen von Kupfer und Kupferlegierungen

Der Lebenslauf von Kupfer wird digital – für innovatives Materialdesign bis zum Recycling

Kern des Projektes KupferDigital ist es, einen Demonstrator für ein digitales Datenökosystem zu erstellen, der der Digitalisierung der Materialforschung und der metallverarbeitenden Industrie als zukunftsfähige Plattform zur Verfügung stehen soll. Das Projekt KupferDigital entwickelt Methoden und Konzepte, um den Lebenszyklus am Beispiel von Kupfer – von der Erzgewinnung bis zum Recycling – digital zu erfassen. Grundlage ist die Entwicklung sogenannter Ontologien. Diese können als eine Art Wissensnetz verstanden werden. Sie dienen als gemeinsame Standards für die Beschreibung von Werkstoffen und technischen Vorgängen. Sie helfen bei der digitalen Erfassung von Prozessschritten sowie von Materialeigenschaften. Parallel dazu werden Konzepte für Datenstrukturen, die Speicherung und den Austausch von Werkstoffdaten über neu zu definierende Schnittstellen erarbeitet.

Über die Bereitstellung digitalisierter Lebenszyklen von Kupfer wird die Industrie bei der Produktentwicklung befähigt, neue Werkstoffentwicklungen frühzeitig zu bewerten, beispielsweise unter dem Gesichtspunkt der Nachhaltigkeit. Kupfer kommt hier eine aktuelle Bedeutung zu, weil es für die digitale Transformation sowie die Energie- und Mobilitätswende von fundamentaler Bedeutung ist und somit von hohem gesellschaftlichem Wert. Die Projektziele sind sowohl auf weitere metallische Struktur- und Funktionswerkstoffe als auch auf andere Industriebereiche übertragbar. Die Projektergebnisse werden im Rahmen der Aktivitäten der Innovationsplattform MaterialDigital allen Interessierten zur Verfügung gestellt.

Danksagung

Das Vorhaben 13XP5119A  wird im Rahmen der Innovationsplattform MaterialDigital vom Bundesministerium für Bildung und Forschung gefördert.

Entwicklung antiviraler Eloxaloberflächen

Die globale SARS-CoV2-Pandemie verursacht einen immensen zusätzlichen Bedarf an antiviralen Oberflächen in nahezu allen Situationen des täglichen Lebens. Insbesondere im öffentlichen Sektor werden zukünftig verstärkt Lösungen verlangt, um das Infektionsrisiko zu senken. Damit verbunden ist ein riesiger Markt für innovative Beschichtungskonzepte. Potentielle Anwendungen wie bspw. Handläufe, Haltegriffe, Türklinken oder Sanitäreinrichtungen erfordern den Einsatz langlebiger Materialien mit einer möglichst dauerhaften antiviralen Wirksamkeit. In diesem Kontext stellen anodisierte Aluminiumwerkstoffe mit der meso- und makroporösen Oberfläche ein interessantes Substratmaterial für die Modifizierung mit viruziden bzw. bakteriziden Nanopartikeln dar.  

Ziel des Forschungsvorhabens ist somit die Nutzung der inhärenten Porenstruktur des anodisch oxidierten Aluminiumsubstrats, indem antivirale Metall-Nanopartikel sowie Photokatalysatoren in die offene Porenstruktur eingebracht werden. Die technische Herausforderung bei der Entwicklung einer derartigen funktionalen Oberfläche besteht darin, das Eloxalschichtsystem so zu gestalten, dass die Einlagerung der Partikel gelingt ohne die wesentlichen Eigenschaften der Eloxalschicht (insb. den Korrosionsschutz) zu beeinflussen. Dies soll im Rahmen dieses Forschungsvorhabens über ein Mehrschicht-Eloxalsystem realisiert werden. Die darauffolgende Funktionalisierung der Eloxalschicht, soll wie bereits im IGF-Vorgängervorhaben 20136 N per elektrophoretischer Einlagerung der Nanopartikel erfolgen.

Durch die Entwicklung einer antiviralen Eloxaloberfläche kann die internationale Wettbewerbsfähigkeit von den vorwiegend kleinen und mittelständischen Lohnbeschichtungsunternehmen gestärkt werden. Insbesondere da durch diese Entwicklung ein gänzlicher neuer Markt im Gebiet der funktionalen Oberflächen erschlossen werden kann. 

Danksagung

Das Forschungsvorhaben 22658 N der Forschungsvereinigung Verein für das Forschungsinstitut für Edelmetalle und Metallchemie (fem) wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz gefördert.

Entwicklung warenträgerspezifischer Simulationsmodelle für die Optimierung und Steuerung galvanischer Abscheidungsprozesse

Galvanisierung ist auch heute noch in hohem Maße Handarbeit, besonders in der Edelmetall-Gestellgalvanisierung. Die Vielzahl der Einflussvariablen auf den Galvanisierprozess macht diesen nur schwer berechen- und automatisierbar. Optimierungen geschehen meist auf der Ebene der Geometrie, indem z.B. Blenden und andere Vorrichtungen zur Flusssteuerung angebracht werden. 

Zwar gibt es IT-Lösungen, aber diese konzentrieren sich primär auf die Abbildung des vorhandenen Arbeitsprozesses, nicht auf die Optimierung der Galvanisierung. Es fehlen bislang Ansätze zur automatisierten Erkennung teile- und gestellspezifischer Randbedingungen. 

Das Galvanik-Unternehmen Jentner und das fem beschreiten in diesem Projekt einen völlig neuen Weg: Mittels kameragestützter Simulationsmodelle soll es möglich sein, signifikant bessere Ergebnisse bei der Galvanisierung zu erzielen, den Ausschuss zu senken und dabei substantiell Material und Energie einzusparen. Die erhöhte Genauigkeit des Galvanisierprozesses eröffnet überdies Märkte, die mit dem bisherigen Ansatz nicht zugänglich waren. Die Lösung wird in ein BDE-System implementiert. Die mittels Simulationsprogramm COMSOL® ermittelte Schichtdickenverteilung auf einem mit Teilen bestückten Galvanisiergestell zeigt die Abbildung.

Danksagung

Das ZIM-Vorhaben KK5119101PR0 der Forschungsvereinigung Verein für das Forschungsinstitut für Edelmetalle und Metallchemie wird über die AiF im Rahmen des Zentralen Innovationsprogramms Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Entwicklung eines Sensor-Arrays für schadgas-adsorbierende Kathodenluftfiltersysteme im Rahmen der deutsch-chinesischen Kooperation ISAAC

Das Projektvorhaben soll die wissensbasierte Auslegung von Kathodenluftfilter für Anwendungen in China ermöglichen und wird durch einen parallelen Antrag auf den Förderaufruf des chinesischen MoST (Ministeriums für Wissenschaft und Technologie) zu bilateralen Forschungsprojekten im Bereich der Brennstoffzellen ergänzt. Partner auf chinesischer Seite sind die Tongji Universität, Shanghai, MANN+HUMMEL China, sowie Weichai als OEM-Partner für Erprobungen.

Die Lebensdauer eines PEM-Brennstoffzellensystems hängt wesentlich von der Sauberkeit der Kathodenluft ab. Der schädliche Einfluss von Gasen wie NH3, NOx und SO2 wurde bereits ebenso untersucht wie der wirksame Schutz durch Filter mit Aktivkohlen, die diese Schadgase selektiv adsorbieren können. Da die massenbezogene Speicherkapazität von Aktivkohlen für Schadgase begrenzt ist, ist es für die Filterauslegung unerlässlich, die im Realbetrieb auf den Filter einwirkende Schadgasmenge zu kennen. Feldversuche in Deutschland zeigten, dass diese sehr stark von der lokalen Luftqualität abhängt. Ferner werden Luftqualitätsdaten ermittelt, die als Basis für die wissensbasierte Auslegung von Kathodenluftfilter für Anwendungen in China dienen. 

Ziel des Forschungsvorhabens ist die Entwicklung eines neuartigen Kathodenluftfiltersystems mit integrierter Durchbruchs-Sensorik mit elektrochemisch aktiven Oberflächen für die Gase NH3, NOx und SO2 zur Erprobung in China. Weiterhin die Entwicklung und Erprobung eines Simulationswerkzeugs zur Auslegung von Kathodenluftfiltern hinsichtlich Schadgasadsorption inklusive Validierung. Das dafür vorgesehene Sensorarray wird auf Basis gassensitiver Schichten bei Beherrschung von Querempfindlichkeiten und Nachweisgrenzen im Spurenkonzentrationsbereich entwickelt. Dazu wird eine intelligente Signalauswertung mit Kompensation von Temperatur und Feuchteeinflüssen für die Anwendung im Nutzfahrzeugbereich in China hergestellt. Dies führt zur Ableitung einer wissensbasierten Auslegungstheorie für Kathodenluftfilter auf Basis der Labor- und Feldversuche.

Die zentrale Aufgabe des fem ist die Entwicklung von Sensorschichten, d.h. elektrochemisch aktiven Oberflächen, die sensitiv und selektiv auf ausgewählte Schadgase bzw. -gemische im sub-ppm-Bereich reagieren. Nach dem Prinzip der Gas-Festkörperwechselwirkung soll eine Signalerzeugung detektiert werden. Auf geeigneten 3D-Trägermaterialien – z.B. Interdigitalelektroden, gedruckte Elektronik – sollen zuerst intrinsisch leitfähige Polymere wie Polyanilin oder Polypyrrol elektrochemisch appliziert werden, da diese sich aufgrund schneller Ansprechzeiten zur Signalerzeugung eines Durchbruchssensors besonders eignen. Weiterhin ist eine gewisse Selektivität abgestimmt auf das jeweilige Schadgas (NH3, NOx und SO2) gefordert, weshalb die Polymerschichten funktionalisiert werden müssen. Diese Aufgabe soll von Metallen (z.B. Ag, Cu), Metalllegierungen (AgCu, CuZn) und Metalloxiden (ZnO, SnO2) übernommen werden. Diese werden anschließend in Form von Nanopartikeln entweder elektrochemisch mittels Pulse-Plating-Technik oder auch als Co-Abscheidung in die Polymerschicht eingebaut, wodurch die Sensoren Ihre Selektivität für das jeweilige Schadgas erhalten. Mit den am Institut vorhandenen Charakterisierungsmöglichkeiten werden die neuartigen Schichten dokumentiert. Die hergestellten Proben werden dem Projektpartner IUTA zur Verfügung gestellt, um die gassensitive Beschichtungen für Sensor-Arrays für unterschiedliche Konzentrationsbereiche von Gasen/ Gasgemischen zu testen. Die Schichtsysteme müssen für bestimmte Schadgase so hergestellt werden, dass Querempfindlichkeiten (Feuchte, Temperatur etc.) auf dem Sensor-Array und Kreuzreaktionen vermieden werden. Die unterschiedlichen Gassensoren werden zuletzt zu einem Sensorarray verbaut und für den Einsatz im Filtersystem bei Mann+Hummel unter realen Bedingungen getestet. Anschließend erfolgt erneut die Charakterisierung der Beschichtung von Rückläufern aus dem Feld am fem.

DANKSAGUNG

Das Projekt FKZ 03B11025A (ISAAC) wird im Rahmen des Nationalen Innovationsprogramms Wasserstoff- und Brennstoffzellentechnologie durch das Bundesministerium für Digitales und Verkehr gefördert. Die Förderrichtlinie wird von der NOW GmbH koordiniert und durch den Projektträger Jülich (PtJ) umgesetzt.

Innovation im Zinkdruckguss: Erzeugung spiegelglänzender Gussoberflächen durch trennmittelfreie Fertigung

Bauteile aus Zinkdruckguss werden in vielen Bereichen des täglichen Lebens, im Automobil-, Maschinen- und Apparatebau, in der Elektrotechnik und Elektronik, sowie im Bauwesen und in der Möbelindustrie eingesetzt. Dabei sind die Anforderungen an die jeweilige Oberflächengüte genauso vielfältig wie die in Frage kommenden Verfahrensvarianten, beispielsweise Lackieren, Aufbringen von Konversionsschichten oder Galvanisieren. Für hohe Anforderungen an Korrosionsbeständigkeit, Optik und Haptik werden häufig galvanische Verfahren gewählt, in der Regel für dekorative Applikationen in der Beschichtungsreihenfolge Kupfer, Nickel, Chrom mit Gesamtschichtdicken von bis zu 25–50 µm.

Vor jedem Gießzyklus müssen Trenn- und Schmiermittel auf die Kavität der Form aufgetragen werden, damit die Zinkdruckgussteile sicher entformt und so beim Ausstoßen aus der Gießform nicht beschädigt werden. Ein Nachteil bei der Verwendung dieser Hilfsstoffe sind unerwünschte Wechselwirkungen mit den Gussteilen, insbesondere der Oberflächen. Beispielsweise kann es durch Verdampfung und Pyrolyse der Hilfsstoffe während des Gussprozesses zur Bildung von oberflächennahen Poren führen; einem der größten Qualitätsprobleme des Zinkdruckgusses. Ebenso kann es zu einer negativen Beeinflussung der Oberflächeneigenschaften kommen (Verfärbungen, Verschlechterung der Benetzbarkeit oder Lackierfähigkeit, etc).

Das Aufbringen von dauerhaften Verschleißschutzbeschichtungen mittels CVD- und PVD-Verfahren auf die Gießformen erlaubt bereits eine deutliche Reduktion des Trennmittelverbrauchs. Allerdings ist es technisch anspruchsvoll, diese Schichten auf komplexen Formen haftfest zu applizieren, wodurch weitere Zwischenschritte erforderlich sind. Eine Alternative stellen plasmapolymere Trennschichten dar, die im Bereich Zinkdruckguss bisher noch nicht eingesetzt werden. Im Projekt sollen diese Schichten untersucht und insbesondere hinsichtlich thermischer und mechanischer Stabilität sowie im Hinblick auf die Schichthaftung optimiert werden. 

Ziel des Projekts ist es, Trennmittel vollständig aus der Zinkdruckgussfertigung zu eliminieren, um somit trennmittelbasierte Gussfehler zu vermeiden. Durch den Einsatz von plasma-polymeren Trennschichten sollen glänzende, saubere Bauteile der Rauheitsklasse N1–N4 gefertigt werden können. Die hohe Abbildungsgenauigkeit der Oberfläche eröffnet weitere Möglichkeiten bei der Herstellung von dünnwandigen Präzisionsbauteilen. Direkt verbunden ist hiermit das wirtschaftliche Ziel, die Fertigungsprozesskette zu verkleinern und die Nacharbeit (Strahlen, Schleifen und Polieren) zu vermeiden. Die höhere Oberflächengüte soll auch genutzt werden, um die nachfolgenden galvanischen Beschichtungsschritte effektiver und weniger fehleranfällig zu gestalten. Am fem wird schwerpunktmäßig der Einfluss der verbesserten Oberflächenqualität auf den galvanischen Beschichtungsprozess untersucht, z.B. hinsichtlich erforderlicher Prozessschritte, Mindestschichtstärken, Korrosionsbeständigkeit und Maßhaltigkeit.

Danksagung

Das IGF-Vorhaben 21868 N der Forschungsvereinigung Verein für das Forschungsinstitut für Edelmetalle und Metallchemie wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Entwicklung von korrosionsschützenden, verschleißbeständigen und REACH-konformen Refraktärmetall-Magnesium-Nitrid-Schichten zum Schutz von Stahlbauteilen

Im Forschungsvorhaben werden Refraktärmetall-Magnesium-Nitrid-Schichten (RM-Mg-N-Schichten) zum kombinierten Korrosions- und Verschleißschutz von nicht- oder niedrig-legierten Stahlbauteilen entwickelt. Anwendungsbereiche sind z.B. dort angesiedelt, wo auch Hartchrom eingesetzt wird, z.B. bei Kolbenstangen, Motorventilschäften, Wälzlagern, Extruderschnecken, Fadenführungen (Textil) etc.

Um einen guten Verschleißschutz zu gewährleisten, ist angestrebt, RM-Mg-N-Schichten zu entwickeln, die eine Vickershärte ≥ 1.800 HV besitzen (Hartchrom: ca. 1.100 HV). In einem abgeschlossenen DFG-Projekt wurde das Schichtsystem TiMgN bereits eingehend untersucht. Dabei wurde festgestellt, dass eine ca. 2,5 µm dicke TiMgN-Schicht mit ausreichend hohem Mg-Anteil Stahlbauteile zu einem gewissen Maß vor Korrosion schützen kann. Auch im tribologischen Einsatz konnte bei diesen Schichten eine signifikant geringere Reibung und ein deutlich niedriger Verschleiß im Vergleich zu Hartchrom festgestellt werden. Je mehr Mg in den TiMgN-Schichten vorhanden ist, desto unedler wird die PVD-Beschichtung und desto besser ist das Korrosionsverhalten des beschichteten Stahlsubstrates im neutralen Salzsprühtest (NSS Test). Bei TiMgN liegt der Schwellenwert des Mg bei ≳ 17 At.-%, um eine signifikante Verbesserung des Korrosionsverhaltens im NSS-Test zu erhalten. Der maximal mögliche Mg-Gehalt ist durch die Vorbedingung an die Schichthärte (≥ 1.800 HV) limitiert und liegt beim System TiMgN bei ca. 24 At.-%. Der Langzeit-Korrosionsschutz (≥ 96 h) von TiMgN reicht bislang jedoch noch nicht an den einer 20–25 μm Hartchromschicht heran.

Ziel dieses Forschungsvorhabens ist es daher, RM-Mg-N-Schichten zu entwickeln, die einerseits schon bei geringeren Mg-Gehalten einen signifikanten Korrosionsschutz bieten, so dass die damit beschichteten Stahlbauteile mehrere Tage im NSS-Test überstehen (Ziel: ≥ 96 h). Andererseits sollen die Schichten aber auch eine entsprechende mechanisch-tribologische Beständigkeit aufweisen, um eine ausreichende Stabilität gegen von außen eingebrachte Beschädigungen zu besitzen. Die Schichten werden im Forschungsvorhaben mittels eines umweltfreundlichen PVD-Verfahrens (Magnetron Sputtern) entwickelt. Alle eingesetzten Refraktärmetalle sind dabei REACH-konform. Die PVD-Beschichtungstechnologie und die zu entwickelnden Beschichtungen bieten den interessierten Unternehmen den Vorteil der Planungssicherheit aufgrund deren Unbedenklichkeit im Hinblick auf REACH (siehe Hartchrom-Problematik).

Aufgrund der Zielstellung, korrosions- und verschleißschützende sowie gleichzeitig REACH-konforme Schichten zu entwickeln, wird ein extrem breites Spektrum verschiedener Branchen angesprochen. Die potentielle Wertschöpfungskette erstreckt sich dabei von Targetherstellern über Beschichter und Maschinenbauer im weitesten Sinne bis hin zu potentiellen Endanwendern von Produkten.

Danksagung

Das IGF-Vorhaben 21989 N  der Forschungsvereinigung Edelmetalle + Metallchemie wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.