Anoden-Plasma ionisiertes Magnetron-Sputtern (APiMS)

Im Invest BW-Forschungsvorhaben APiMS wird ein effizientes PVD-Sputter-Verfahrens erforscht und entwickelt, welches zur Verkürzung der Beschichtungsdauer und dadurch zur Strom- und CO₂-Einsparung führen soll. 

PVD (Physical Vapor Deposition) Verfahren zählen zu den ökonomischen, umweltfreundlichen Oberflächen-Beschichtungstechnologien. Obwohl PVD eine bewährte Technologie ist, werden immer wieder Möglichkeiten für weitere technologische Verbesserungen entdeckt. Die in diesem Forschungsvorhaben beschriebene Projektidee verbindet erst kürzlich für technologische Anwendungen entdeckte Möglichkeiten der zusätzlichen Plasmaerzeugung an einer Anode mit dem PVD-Verfahren der Kathodenzerstäubung, auch Magnetron-Sputtern genannt. Damit wird eine signifikant höhere Ionisierung sowohl des Arbeitsgases als auch des zerstäubten Materials erzielt. Dies führt zu einem effizienteren Fluss der Beschichtungsteilchen zum zu beschichtenden Bauteil, zu besseren Schichteigenschaften und folglich zu einer deutlichen Reduzierung der Beschichtungszeit. Der ökologische Nutzen dieser Technologieverbesserung führt zu einer signifikanten Verringerung des Stromverbrauchs und damit zur CO₂-Einsparung.

Die höhere Ionisierung in der Vakuumkammer wird zu einer Erhöhung der Schichthaftung und der Schichthärte führen. Dadurch werden die mechanischen Eigenschaften der Schicht und somit die Standzeit von beschichteten Werkzeugen oder die Verschleißeigenschaften von beschichteten Bauteilen verbessert.

Das Invest BW Forschungsvorhaben BW1 5038/02 des fem Forschungsinstitutes wird gefördert durch das Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg.

Entwicklung von Detektionssystemen mit elektrochemisch aktiven Oberflächen zur Online-Überwachung von Filteranlagen

Aufgrund steigender Anforderungen an reine Produktionsumgebungen liegt das Augenmerk in der Reinraumtechnik auf der Verringerung von chemischen Verunreinigungen (Airborne Molekular Contamination, AMC) in der Raumluft.

Die AMC-Filter bestehen aus unterschiedlichen Aktivkohlen oder Ionenaustauschern mit begrenzter Aufnahmekapazität. Ein Durchbruch tritt bei Überladung des Materials unbemerkt auf und kann zu erheblichen Produktionsausfällen führen. Daher müssen AMC-Filter in regelmäßigen Abständen bzw. vorsorglich vor Ende der möglichen Nutzungsdauer ausgewechselt werden. Dies verursacht hohe Kosten und große Abfallmengen. Ansätze für die Echtzeit-Überwachung von AMC-Kontaminanten durch aufwendige laserbasierte optische und nicht-optische Methoden liefert das europäische Verbundprojekt MetAMC. Einfache und kostengünstige Sensoren zur Echtzeit-Überwachung stehen aktuell nicht zur Verfügung.

Ziel des Forschungsvorhabens ist die Entwicklung von einfach aufgebauten und kostengünstig herstellbaren Durchbruchsdetektoren mit elektrochemisch aktiven Oberflächen für die AMC-Kontaminanten Ammoniak und Formaldehyd. Nach dem Prinzip der Gas-Festkörperwechselwirkung soll eine Signalerzeugung detektiert werden. Hierfür sollen durch galvanische Abscheidung Nanopartikel mittels Pulse-Plating-Technik auf 3D-Trägermaterialien mit reaktiven Oberflächen abgeschieden werden. Als Nano-Metallpartikel sind u. a. Kupfer, Silber und Zinn angedacht. Um die unterschiedlichen elektrochemischen Aktivitäten zu erfassen, sollen auch Legierungen sowie neuartige Schichtsysteme mit leitfähigen Polymeren zum Einsatz kommen. Die vorgesehene Messtechnik zur Erfassung der Detektorsignale umfasst Impedanzmessungen sowie die Anwendung der 4-Leiter-Kelvin-Methode und den Aufbau von Brückenschaltungen.

Der Markt für die Sensoren ist groß, da Reinraumfilter in der Halbleiterindustrie, der Pharma- und Life-Science-Industrie, der Mikroelektronik, der Optik, Kosmetik- und Lebensmittelproduktion sowie der Gen- und Medizintechnik zum Einsatz kommen. Der Impuls zur Umsetzung in marktfähige Produkte folgt aus der verbesserten Kontrolle der Reinraumbedingungen und der Einsparpotentiale durch die effizientere Nutzung der AMC-Filter. Darüber hinaus würden die angestrebten Ergebnisse neue funktionale Anwendungen für die Beschichtungsbranche ermöglichen. 

Danksagung

Das IGF-Vorhaben 21279 N der Forschungsvereinigung Edelmetalle + Metallchemie wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Kontakt- und Langzeitverhalten selbstschmierender Beschichtungen in stromtragenden Verbindungen der Elektroenergietechnik

Durch die Energiewende und die Elektrifizierung des Individualverkehrs werden die Anforderungen an den sicheren und zuverlässigen Transport von Elektroenergie gesellschaftlich noch wichtiger. Ein stabiles Stromnetz erfordert ein hohes Maß an Zuverlässigkeit aller beteiligten Komponenten. Gerade Verbindungsstellen, an denen elektrische Energie von einem Leiter auf einen anderen übertragen wird, stellen dabei häufig kritische Punkte dar. Beschichtungen der einzelnen Kontaktpartner sind dabei bereits seit Jahren Stand der Technik. Die steigenden Ansprüche und Herausforderungen erfordern den Einsatz neuer Materialien, mit denen bestehende Betriebsmittel weiterentwickelt werden können. Die Anforderungen an Beschichtungen im Bereich stromführender Steckverbindungen in Stromnetzen sind in den letzten Jahren stark gestiegen. Durch die kompaktere Bauweise der Geräte und eine steigende Leistungsdichte erhöhen sich die Temperaturen im Einsatz. Wird zusätzlich noch eine hohe Anzahl an Steckzyklen gefordert, sind die konstruktiven und montagetechnischen Herausforderungen hoch. Steckverbindungen mit hoher Steckzyklenzahl werden derzeit mit einem Kontaktschmiermittel vorbehandelt, um den Reibverschleiß im Betrieb zu minimieren.

Das Kontaktschmiermittel muss langzeitstabil und temperaturbeständig sein, damit die geforderten Einsatzzeiten von zum Teil mehreren Jahrzehnten erreicht werden können. Bei der Montage muss auf eine exakte Dosierung des Kontaktschmiermittels geachtet werden, sodass der Kontaktwiderstand nur moderat erhöht, gleichzeitig aber der Reibwert zuverlässig verringert wird. Zudem enthalten die eingesetzten Materialien meist Fluorchemikalien, deren Beschaffung teuer und deren Herstellung bzw. Entsorgung problematisch ist.

Eine Alternative zu den üblicherweise eingesetzten Reinsilberschichten, die mit Kontaktschmiermittel behandelt werden, stellen Silberdispersionsschichten mit eingelagerten Trockenschmierstoffen dar. Ziel des Projektes war die Entwicklung und Untersuchung galvanisch abgeschiedener Silber-Dispersionsschichten mit selbstschmierenden Eigenschaften. Die einzulagernden Partikel wurden hierbei in Form von Pulvern zum Metallmatrixelektrolyten gegeben und durch eine entsprechende Elektrolytumwälzung in Schwebe gehalten. Durch eine geeignete Wahl der Prozess- und Elektrolytparameter konnte der Partikeleinbau in die Schicht gesteuert werden. 

Zusammengefasst zeigen die Ergebnisse des Projektes, dass bei der Beschichtung von Modellgeometrien alle untersuchten Partikeltypen in Silberschichten eingebaut werden können. Die Systeme Silber-Graphit, Silber-MoS2 und Silber-WS2 heben sich dabei durch ihre guten tribologischen Eigenschaften hervor. Es werden Werte für die mittleren Reibkoeffizienten um 0,2 erreicht, die auch nach einer thermischen Auslagerung von 2000 h bei 180 °C stabil bleiben. Zudem verlangsamt der Einbau der Dispersoide den Härteabfall infolge der Wärmebehandlung im Vergleich zu reinen Silberschichten.

Auch an den industriellen Probekörpern können diese Ergebnisse im Prinzip bestätigt werden. Der maximale Reibweg einer Silberdispersionsschicht bis zum Ausfall vergrößert sich gegenüber einer Reinsilberschicht um den Faktor 3–6 (WS2), 5–10 (MoS2) bzw. 10–18 (Graphit). Dabei werden jedoch noch nicht die Werte einer mit Kontaktschmiermittel behandelten Silberoberfläche erreicht. Dies könnte ein Gegenstand weiterer Untersuchungen sein.

Entwicklung eines neuartigen katalytisch aktiven Wärmeübertragers zur Totaloxidation von Kohlenwassserstoffen und Kohlenmonoxid in Abluftströmen, insbesondere für Gießereien

Einführung

Die Entwicklung eines katalytischen Wärmeübertragers zur Reinigung von lösemittelhaltiger Abluft von kleinen- und mittleren Unternehmen (KMU) war Forschungsgegenstand eines gemeinsamen Projektes des fem aus Schwäbisch Gmünd und dem IUTA aus Duisburg. Der neuartige Wärmeübertrager wurde als Rohrbündelwärmeübertrager mit integrierter katalytischer Funktion konzipiert, wobei die strukturierten Wärmeübertragerrohre an der Rohraußenoberfläche mit zu behandelnder Abluft umströmt wurden und die katalytische Beschichtung der Rohroberflächen durch einen einstufigen elektrochemischen Beschichtungsprozess erfolgte.

Ergebnisse

Industriekatalysatoren kommen in verschiedenen Bauformen zum Einsatz. Bekannt sind beschichtete monolithische Strukturen, wie sie beispielsweise in Autoabgaskatalysatoren eingesetzt werden. Beschichtete Wärmeübertrageroberflächen sind ebenfalls auf dem Markt verfügbar. Hierfür werden bevorzugt Plattenwärmeübertrager zu Katalysatoren aufgebaut. Plattenwärmeübertrager zeichnen sich durch einen hohen Wärmeaustausch bei geringer Baugröße aus. Nachteilig ist, dass sie nur für partikelarme Abluftmedien geeignet sind, da die Oberflächen nur sehr schwer zugänglich und somit schlecht zu reinigen sind. Ähnlich verhält es sich mit katalytisch beschichteten Röhrenwärmeübertragern. Die Beschichtung ist in den Röhren. Auch bei diesen Wärmeübertragern ist die Reinigung nach Exposition mit partikelhaltiger Abluft problematisch.

In diesem FuE-Vorhaben wurde daher ein Katalysatortyp entwickelt, der als Rohrbündelwärmeübertrager ausgeführt wurde, wobei hier die Rohre außen mit katalytisch aktivem Palladium beschichtet und mit Abluft umströmt wurden. 

Zusammenfassung

Es konnte durch die beiden Forschungsstellen erfolgreich gezeigt werden, dass mit dem neuen Konzept für einen Wärmeübertrager lösemittelhaltige Abluftströme mit einem Stoffumsatz von bis zu 80–95 % oxidativ abgebaut werden können. Da bei diesem Reaktortyp eine Umströmung der WT-Rohre mit der zu behandelnden Abluft an der Rohraußenoberfläche stattfindet (und nicht wie üblich durch die Rohre), ist für eine gute Umströmung der Rohre und für einen hohen Stoffaustausch eine geeignete Oberflächenstruktur der WT-Rohre notwendig.

Danksagung

Das IGF-Vorhaben 19350  N der Forschungsvereinigung Edelmetalle + Metallchemie wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.