Calcium-Schwefel: Innovative Materialentwicklung für nachhaltigere Batterien (CaSino)  

Die Energiewende ist nur dann erfolgreich, wenn neben der Erzeugung von Strom aus erneuerbaren Energiequellen auch die die Entwicklung von kosten- und ressourceneffizienten Energiespeichern vorangetrieben wird. Batteriezellen mit der einzigartigen Materialpaarung aus Calcium und Schwefel sind ein aussichtsreicher Kandidat für die Nachfolge der derzeit üblichen Lithium-Ionen-Batterien: Sie reduzieren die Materialabhängigkeit Deutschlands, minimieren politische, ökologische und wirtschaftliche Risiken und bieten aufgrund geringer Kosten, guter Verfügbarkeit und hoher Energiedichte ein enormes technologisches Potential.

Dieses Potential auszuschöpfen ist Ziel des FuE-Projekts “Calcium-Schwefel: Innovative Materialentwicklung für nachhaltigere Batterien”, kurz CaSino. Zu den Forschungspartnern zählen neben dem fem, das für die galvanische Herstellung der Calcium-Anoden zuständig ist, das KIT (elektrochemische Charakterisierung des Ca-Batterie-Elektrolyten), das DLR (Herstellung der Schwefel-Kathoden), das HIU (Modellierung der Prozesse in der Calcium-Schwefel-Vollzelle) und das NMI (Grenzflächenmorphologie und Strukturaufklärung). Die EuRA AG übernimmt die ökologische Bewertung der einzelnen Batteriekomponenten.

Gemeinsam mit den Industriepartnern Alantum, Varta, Custom Cells, Accurec und IoLiTec soll bis 2025 ein leistungsfähiger Demonstrator der Calcium-Schwefel-Batteriezelle entstehen.

DANKSAGUNG

Das Projekt wird durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Bekanntmachung „Batterie 2020 Transfer“ mit ca. 3 Millionen Euro gefördert.

Fadenförmige Li-S-Elektroden für flexible Energiespeicher

Für die nächste Generation von flexibler Elektronik wie aufrollbaren Bildschirmen, körpernahen Smart Devices oder Smart Textiles besteht ein steigendes Interesse an flexiblen, sicheren, dünnen und leichten Energiespeichern. Für flexible Batterien müssen alle Bestandteile, von den funktionalen Zellkomponenten wie Anode, Kathode, Elektrolyt, Separator und Stromsammler bis zur Einhausung dieser Komponenten flexibel genug sein, um mechanischer Verformung im Einsatz Stand zu halten. Außerdem muss die Leistungsfähigkeit der Batterie auch unter mechanischer Belastung erhalten bleiben. Die meisten heute existierenden Batterien sind zu schwer, voluminös und starr, um den Anforderungen der hier anvisierten Anwendungen zu genügen. 

Im Unterschied zu konventionellen elektrochemischen Energiespeichern weisen flexible Speicher für moderne Anwendungen ein Anforderungsspektrum anderer Gewichtung auf. Während auch hier eine möglichst hohe spezifische Energie und eine hohe Zyklen- und Ratenfestigkeit vorteilhaft sind bzw. sein können, müssen in einem ersten Schritt doch andere Faktoren verbessert und optimiert werden, ohne die die Lebensdauer und Sicherheit und damit die Anwendbarkeit in der Zielanwendung auf inakzeptable Weise eingeschränkt wären. An erster Stelle kommt es hier auf die mechanische Flexibilität und Belastbarkeit bei gleichzeitig möglichst geringem Risiko für Funktionsversagen sowie die Gefahr durch zu starke Wärmeentwicklung oder Brandentstehung im Falle einer fatalen Schädigung z.B. durch Verunfallung etc. an. 

Eine verbesserte mechanische Stabilität ist auch im Hinblick auf die Verarbeitbarkeit wichtig, z.B. in Textilmaschinen. In Bezug auf die Zellchemie von flexiblen Energiespeichern werden bislang verschiedene Ansätze verfolgt, wobei sich das Lithium-Schwefel-System aufgrund einiger wichtiger intrinsischer Vorteile besonders anbietet. Die antragstellenden Forschungseinrichtungen HSAA und fem haben in bereits abgeschlossenen Forschungsvorhaben IGF 18127N, IGF 19134N und BMWi 03ETE026C neuartige Elektroden und Polymerschutzschichten auf Lithium für die Li-S-Batterien entwickelt.

Ziel von FiberBat ist es, basierend auf den genannten Ergebnissen zur Elektrodenentwicklung für das Li-S-System, faserartige Anoden und Kathoden für eine neuartige flexible und kostengünstige Lithium-Schwefel-Zelle hoher Sicherheit und Umweltfreundlichkeit mit Hilfe materialeffizienter Verfahren unter Einsatz von Rohstoffen hoher Verfügbarkeit und Umweltfreundlichkeit zu entwickeln. Als Substrate, welche in der späteren Anwendung als Stromsammler dienen sollen, werden metallische und im späteren Projektverlauf auch nichtmetallische Drähte bzw. Fasern eingesetzt. Diese werden mit den Aktivmaterialien beschichtet und auf Basis oben genannter Projektergebnisse durch eine weiterentwickelte und den spezifischen Anforderungen des Konzepts angepasste Polymerschicht geschützt. Diese Schutzschicht erfüllt auf der Kathodenseite gleichzeitig auch die Separator-Funktion. Für die elektrochemische Charakterisierung und zu Demonstrationszwecken wird jeweils ein Kathoden-/Anoden-Paar in geeigneter Art und Weise, beispielsweise in Form eines Zwirns, hergestellt und in einen Schrumpfschlauch überführt, der mit Elektrolyt aufgefüllt wird.

Auf diese Weise wird eine fadenartige Zelle hergestellt, die die beste Integrierbarkeit in Smart Textiles bietet. Ein Vorteil bei diesem Konzept ist, dass im Falle eines lokalen Separatorversagens, beispielsweise durch übermäßige mechanische Beanspruchung, evtl. nur wenige, idealerweise nur ein Zellfaden betroffen ist, sodass ein interner Kurzschluss nur mit einer, im Vergleich zu klassischen Folienelektroden, geringen Reaktionsmasse und damit Energiefreisetzung verbunden ist, wobei die Diffusionswege für potentiell eindringenden Sauerstoff lang sind. Gleichzeitig ist durch das Gewebe auch eine bessere Wärmeabfuhr möglich, sodass es nicht zu einem Wärmestau innerhalb der Zelle kommen kann. Beide Aspekte reduzieren die Gefahr eines sogenannten Thermal Runaway und erhöhen die Sicherheit der Zelle deutlich. 

Danksagung

Das IGF-Vorhaben AiF 22793 N der Forschungsvereinigung Edelmetalle+Metallchemie wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Reaktivierung von NMC-Kathodenmaterial, zurückgewonnen Reaktivierung von NMC-Kathodenmaterial, zurückgewonnen aus einem wasserbasierten Recyclingprozess, für die Wiederverwendung in Lithium-Ionen-Zellen  

Energiespeicherung und die damit verbundene Energienutzung sind ein wichtiges gesellschaftliches Thema. Ökologische Überlegungen zu Wiederverwendbarkeit und Klimaneutralität sorgten in den letzten Jahren zudem für eine Änderung der Nutzungsgewohnheiten. Mobile und wiederaufladbare Geräte wurden verstärkt stationären vorgezogen. Aufladbare Lithium-Ionen-Batterien (LIB) werden bereits heute millionenfach in verschiedenen Größen eingesetzt, beispielsweise in Mobilfunkgeräten, Laptops oder Powertools. Das erfolgreiche Up-Scaling erlaubt es, auch Elektroautos mit dieser Speichertechnik auszustatten. Der globale Markt für Elektrofahrzeuge und damit auch für LIB wächst aktuell enorm – von ca. 90 GWh im Jahr 2016 auf ca. 8,1–10,5 TWh im Jahr 2030. Eine nachhaltige Gestaltung der Elektromobilität ist aber nur möglich, wenn die Prinzipien einer effizienten Kreislaufwirtschaft berücksichtigt werden, insbesondere das Batterierecycling in Form einer optimalen Rückgewinnung der Rohstoffe und deren Aufarbeitung, sodass diese erneut in LIB eingesetzt werden können.

Angesichts der Tatsache, dass LIB eine durchschnittliche Lebensdauer von 5 bis 10 Jahren haben, ist eine sinnvolle Rückgewinnung der in LIB enthaltenen Rohstoffe ein wichtiges Thema für die nächsten Jahrzehnte. Eine durchschnittliche Menge von 4000 Tonnen LIB enthält 110 Tonnen Schwermetalle und mehr als 200 Tonnen giftige Elektrolyte. Eine Altbatterie enthält 5–20 % Co, 5–7 % Li, 5–10 % Ni und 5–10 % andere Metalle sowie organische Verbindungen. Kathodenmaterialien mit Ni, Co und Li haben den höchsten wirtschaftlichen Wert. Die Rohstoffkosten machen 50 % der Gesamtkosten aus, die bei Ersatz von Neumaterialien durch recycelte Materialien um bis zu 30 % gesenkt werden könnten.

Bei den aktuell angewandten Recyclingverfahren für LIB-Zellen, hydro- und pyrometallurgische Verfahren, wird auch das Kathodenmaterial unter hohem Energieaufwand in mehreren komplizierten Prozessschritten in chemische Grundstoffe umgewandelt, die prinzipiell auch für andere Verwendungszwecke einsetzbar sind. In neuartigen Verfahren zum LIB-Recycling („Direkt-Recycling“) ist angestrebt, dass das Kathodenaktivmaterial von der Trägerfolie mit Wasser abgestrahlt und getrocknet wird. Dabei bleibt die chemische Zusammensetzung der sogenannten schwarzen Masse („black mass“) nahezu unverändert. Die elektrochemische Aktivität ist bislang jedoch gering im Vergleich zu neuem Kathodenmaterial. Das bislang aus Direkt-Recycling gewonnene NMC-Kathodenmaterial (Rezyklat) ist in diesem Zustand nicht für den erneuten Einsatz in Lithium-Ionen-Batterien geeignet.

Ziel von ReKath ist es, NMC-Rezyklate in neuartigen Prozessschritten so aufzubereiten, dass diese Materialeigenschaften aufweisen, das neuem NMC-Kathodenmaterial entspricht. Dies soll über weitergehende Reinigungsschritte erfolgen, die bestimmte Verunreinigungen entfernen. Die nachfolgenden Schritte beinhalten eine Relithiierung dieses Materials mit  Hilfe von Lithiumsalzen und eine thermische Behandlung bei Temperaturen, die eine vollständige Restrukturierung der passivierenden Grenzschichten der NMC-Kristallite ermöglichen. Die richtige thermische Behandlung stellt den entscheidenden Prozessschritt dar.

Die Materialproben – Rezyklate vor und nach der weitergehenden Aufarbeitung – werden an der Hochschule Esslingen (HSE) mittels XRD, EDX, AAS, Zetapotentialmessungen, AFM sowie Redoxtitration untersucht und charakterisiert, um Hinweise auf die tatsächlich vorliegende Kristallstruktur des aufgearbeiteten NMC-Altmaterials, die chemische Zusammensetzung, die Oxidationsstufe der Elemente sowie die Oberflächenveränderungen der Partikel der aufgearbeiteten NMC-Materialien zu erhalten.

Um die technische Eignung der aufgearbeiteten NMC-Materialien im Vergleich zu neuem Kathodenmaterial beurteilen und quantifizieren zu können, sollen Materialproben in Batterie-Testzellen eingesetzt und elektrochemisch untersucht werden. Dazu werden am fem Forschungsinstitut aus dem aufgearbeiteten NMC-Recyclingmaterial neue Elektroden hergestellt und in Halbzellentests im Knopfzellenformat getestet. In C-Raten-Tests sollen die Lade- und Entladeraten variiert und die Zyklenfestigkeit der Elektroden aus dem NMC-Recyclingmaterial überprüft werden. Die zu entwickelnden Prozessschritte in ReKath sollen verfahrenstechnisch möglichst einfach gestaltet werden, damit diese von KMUs (z.B. Recycling- und Abfallverwertungsunternehmen, Anlagenhersteller, etc.) mit einem tragbaren prozesstechnischen Aufwand und damit auch betriebswirtschaftlich durchführbar sind. Die bisherigen hydro- und pyrometallurgischen Verfahrensansätze stellen dagegen aufwändige technische Prozesse dar, die in der Regel nur von großen und hochspezialisierten Unternehmen wirtschaftlich umsetzbar sind.

Danksagung

Das IGF-Vorhaben AiF 22819 N der Forschungsvereinigung Edelmetalle+Metallchemie wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschafts-

forschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Entwicklung einer kostengünstigen Nickel-Zink-Doppelfluss-Batterie für den Einsatz als stationärer Stromspeicher

Im Zuge der Energiewende stehen vor allem Lithium-Ionen-Batterien für die Elektromobilität und andere mobile Anwendungen im Fokus der Entwicklung. Weniger Beachtung finden stationäre Speicher, bei denen auch andere Speichersysteme vorteilhaft sind. Insbesondere Redox-Flow-Batterien (Redox-Flussbatterien), bei denen die Energie im Elektrolyten gespeichert ist und dieser kontinuierlich durch die Zelle gepumpt wird. Dadurch hängt die speicherbare Energie vom Tankvolumen des Elektrolyten ab und die Leistung der Zelle von der Pumpgeschwindigkeit und den absoluten Elektrodenflächen. Energie und Leistung sind damit anders als bei Lithium-Ionen-Batterien unabhängig voneinander skalierbar. Zudem lassen sich große Energiemengen im Vergleich zu Lithium-Ionen-Batterien deutlich kostengünstiger speichern, bei gleichzeitig längerer Lebensdauer.

Unter den Flussbatterien sind aktuell vor allem Vanadium-Redox-Flussbatterien verbreitet. Diese Systeme weisen jedoch eine vergleichsweise niedrige Energiedichte auf und enthalten teures und gesundheitsschädliches Material auf Vanadium-Basis. Außerdem ist die Membran innerhalb der Zelle aufgrund ihrer chemischen Instabilität gegenüber Vanadiumspezies eine kritische Komponente. Im Gegensatz dazu sind Flussbatterien auf Basis von Nickel und Zink vergleichsweise umweltfreundlich, günstig, gut verfügbar und versprechen eine hohe Energiedichte. In diesem Projekt soll daher ein neues Batteriesystem erforscht werden, bei dem Flüssigkeiten oder Pasten basierend auf Zink und Nickel-Oxiden bzw. -Hydroxiden genutzt werden. Die wiederaufladbare Kathode besteht dabei aus Nickel-Oxyhydroxid (NiOOH) und die Anode aus Zink. 

Anders als in bisherigen Arbeiten soll nicht nur ein alkalischer Elektrolyt gepumpt werden, sondern eine in Zink-Luft-Batterien bereits erfolgreich eingesetzte Suspension aus Zink-Partikeln in wässriger KOH verwendet werden. Diese Suspension ermöglicht durch die Bildung eines Perkolationsnetzwerkes der Zink-Partikel eine große aktive Oberfläche und damit insbesondere beim Entladen hohe Leistungsdichten. Auch auf der Nickel-Seite soll auf Basis der Erfahrungen mit der Zink-Suspension eine ähnliche Suspensionselektrode entwickelt werden. So entsteht eine Nickel-Zink-Doppelflussbatterie.

Schwerpunkt des Vorhabens ist die Auswahl und Weiterentwicklung geeigneter Stromableiter sowie optimierter Ladestrategien und Zelldesigns. Dabei ist das fem aufgrund seiner Expertise in der Galvano- und Batterietechnik bei der Untersuchung der Zink- und Nickelreaktion anhand von Modell-elektroden und mit Hilfe der umfangreichen analytischen Möglichkeiten an der Charakterisierung der Zellbestandteile vor und nach Verwendung in der Flusszelle beteiligt. Mit Hilfe der gewonnenen Erkenntnisse wird dann eine mehrzellige Nickel-Zink-Doppelfluss-Batterie mit einer Leistung von 500 W entworfen, konstruiert und charakterisiert. An der Durchführung des Vorhabens sind die VARTA Microbattery GmbH,  Grillo-Werke AG, Rhenotherm Kunststoffbeschichtungs GmbH und Rudolf Clauss GmbH & Co. KG als Industriepartner und neben dem fem auch die Universität Duisburg-Essen (Lehrstuhl für Energietechnik) als Forschungseinrichtung beteiligt.

Das Verbundvorhaben NiZiFlow2 wird vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Entwicklung innovativer, beschichteter Separatoren zur signifikanten Steigerung der Zyklenfestigkeit von Lithium-Schwefel-Batterien

Im Rahmen der Energiewende nimmt die Energiespeicherung eine zentrale Stellung ein. Um die Reichweite von Fahrzeugen zu erhöhen, den wachsenden Energiebedarf von portablen elektronischen Geräten zu decken oder um Energie für stationäre Anwendungen zwischen zu speichern, sind effiziente Energiespeicher notwendig. Die aktuell hauptsächlich eingesetzten Lithium-Ionen-Batterien stoßen in Bezug auf die Energiedichten an ihre Grenzen und weisen eine unzureichende Umweltbilanz und hohe Materialkosten auf. Eine interessante Alternative, die im Fokus der Forschung steht, sind Lithium-Schwefel-Batterien, deren theoretische Energiedichte ca. dreimal so hoch ist wie bei Lithium-Ionen-Batterien. Schwefel ist im Vergleich zu den in Li-Ionen-Batterien eingesetzten Kathodenmaterialien weder giftig noch umweltgefährdend und aufgrund der höheren globalen Verfügbarkeit auch deutlich kostengünstiger.

Trotz intensiver Forschung sind Lithium-Schwefel-Batterien aufgrund der geringen Zyklenfestigkeit und Coulomb-Effizienz noch nicht wirtschaftlich nutzbar. Eine Ursache für die geringe Zyklenfestigkeit ist der so genannte Polysulfid-Shuttle-Mechanismus. Die Zyklenfestigkeit von Lithium-Schwefel-Batterien wird in hohem Maße davon bestimmt, ob die während der Zellreaktion entstehenden Polysulfide in der Kathode gehalten bzw. an der Passivierung der Anode gehindert werden können. 

Ziel dieses Projektes war zum einen die Entwicklung von Separatoren mit maßgeschneiderten, per Plasmabeschichtung aufgebrachten Übergangsmetallverbindungen. Diese Verbindungen adsorbieren Polysulfide und verhindern damit deren Übergang zur Anode. Als weiteren Lösungsansatz sollten in die Kathode unterschiedliche Übergangsmetallverbindungen eingebracht werden. Die Entwicklung der Separatorbeschichtung fand am fem statt. Dabei wurden handelsübliche Separatoren als Grundmaterial verwendet und unterschiedliche Übergangsmetalloxide, bzw. -sulfide per Plasma-Gasphasen-Abscheidung (PVD) aufgebracht. Die erhaltenen Schichten wurden hinsichtlich Morphologie und chemischer Zusammensetzung charakterisiert und die für Li-S-Zelle relevante Eigenschaften, wie Li-Ionenleitfähigkeit und Polysulfiddiffusion untersucht.

In Vollzellen wurde am ZBT das elektrochemische Verhalten untersucht. Dabei wurde festgestellt, dass einige Materialien den Polysulfid-Shuttle unterdrücken können. Am ZBT wurden Kathoden mit unterschiedlichen Übergangsmetallverbindungen entwickelt und elektrochemisch untersucht. Ebenso wurden die Polysulfide mit Hilfe einer insitu UV/Vis-Zelle während des Zyklisierens untersucht. Insgesamt konnten Materialen identifiziert werden, die den Polysulfid-Shuttle unterdrücken und damit zur Verlängerung der Lebensdauer von Li-S-Zellen beitragen.

Danksagung: Das IGF-Vorhaben 21119 N der Forschungsvereinigung Edelmetalle + Metallchemie wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.