Entwicklung antiviraler Eloxaloberflächen

Die globale SARS-CoV2-Pandemie verursacht einen immensen zusätzlichen Bedarf an antiviralen Oberflächen in nahezu allen Situationen des täglichen Lebens. Insbesondere im öffentlichen Sektor werden zukünftig verstärkt Lösungen verlangt, um das Infektionsrisiko zu senken. Damit verbunden ist ein riesiger Markt für innovative Beschichtungskonzepte. Potentielle Anwendungen wie bspw. Handläufe, Haltegriffe, Türklinken oder Sanitäreinrichtungen erfordern den Einsatz langlebiger Materialien mit einer möglichst dauerhaften antiviralen Wirksamkeit. In diesem Kontext stellen anodisierte Aluminiumwerkstoffe mit der meso- und makroporösen Oberfläche ein interessantes Substratmaterial für die Modifizierung mit viruziden bzw. bakteriziden Nanopartikeln dar.  

Ziel des Forschungsvorhabens ist somit die Nutzung der inhärenten Porenstruktur des anodisch oxidierten Aluminiumsubstrats, indem antivirale Metall-Nanopartikel sowie Photokatalysatoren in die offene Porenstruktur eingebracht werden. Die technische Herausforderung bei der Entwicklung einer derartigen funktionalen Oberfläche besteht darin, das Eloxalschichtsystem so zu gestalten, dass die Einlagerung der Partikel gelingt ohne die wesentlichen Eigenschaften der Eloxalschicht (insb. den Korrosionsschutz) zu beeinflussen. Dies soll im Rahmen dieses Forschungsvorhabens über ein Mehrschicht-Eloxalsystem realisiert werden. Die darauffolgende Funktionalisierung der Eloxalschicht, soll wie bereits im IGF-Vorgängervorhaben 20136 N per elektrophoretischer Einlagerung der Nanopartikel erfolgen.

Durch die Entwicklung einer antiviralen Eloxaloberfläche kann die internationale Wettbewerbsfähigkeit von den vorwiegend kleinen und mittelständischen Lohnbeschichtungsunternehmen gestärkt werden. Insbesondere da durch diese Entwicklung ein gänzlicher neuer Markt im Gebiet der funktionalen Oberflächen erschlossen werden kann. 

Danksagung

Das Forschungsvorhaben 22658 N der Forschungsvereinigung Verein für das Forschungsinstitut für Edelmetalle und Metallchemie (fem) wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz gefördert.

Entwicklung photokatalytischer Eloxalschichten zur Erzeugung funktionaler Aluminiumoberflächen

Im Rahmen des IGF-Vorhabens 20136 N wurden photokatalytisch aktive, anodisierte Aluminiumoberflächen entwickelt, die zu einer Verringerung der Luftverschmutzung, insbesondere der Stickoxidbelastung in urbanen Regionen, beitragen können. Zur Erreichung des Projektziels wurden neben kommerziell erhältlichen Titandioxidpartikeln auch unterschiedlich modifizierte, photokatalytisch aktive Nanopartikel mit möglichst geringen Partikeldurchmessern (5–25nm) in lösemittelhaltigen sowie wässrigen Systemen synthetisiert und daraufhin mit zwei verschiedenen Imprägnierverfahren in die Eloxalporen eingelagert.  

Dazu wurden Eloxalschichtsysteme für eine typische Fassadenlegierung (EN AW5005) auf Basis eines herkömmlichen Schwefelsäureverfahrens, eines Oxalsäureverfahrens und eines Phosphorsäureverfahrens mit für eine Einlagerung hinreichend großen Porenweiten (dPore(H2SO4) 10–20 nm; dPore(C2H2O4) 40–60 nm; dPore(H3PO4) 100–160 nm) entwickelt. Die technische Herausforderung bei der Entwicklung der Schichten bestand darin, diese so zu applizieren, dass die nachfolgende Einlagerung der Nanopartikel deren hohe photokatalytische Aktivität gewährleistet und ein fester Verbund zwischen Eloxal und dem photokatalytisch aktiven Titanoxid entsteht.  

Die dabei verfolgten Verfahren zur Imprägnierung beruhen auf dem Prinzip der elektrophoretischen Einlagerung aus lösemittelhaltigen Dispersionen und der ultraschallunterstützten Tauchimprägnierung zur Einlagerung der Nanopartikel aus wässrigen Systemen. Für beide Verfahren können neuartige, funktionelle Eigenschaften des Eloxals erzeugt werden, die eine hohe photokatalytische Aktivität der Eloxaloberflächen aufweisen. Die erzeugten Schichten erreichen, in Abhängigkeit des Verfahrens und der verfahrensspezifischen Parameter zur Einlagerung der Partikel, eine relative photokatalytische Effizienz (rPCE-Wert) von bis zu 13, wobei ein rPCE-Wert > 2 bereits als „photokatalytisch aktiv zur Luftreinigung“ gilt.  

Korrosionsuntersuchungen an anodisierten und mit TiO2-Partikeln imprägnierten Schichten in einem handelsüblichen Aluminium- und Fassadenreiniger belegen eine sehr hohe Korrosionsbeständigkeit aller Eloxalschichten, die sich in Impedanzwerten im MΩ*cm2-Bereich und Korrosionsstromdichten im Nanoampere-Bereich äußert. Im Rahmen der Korrosions- und Korrosionsklimawechselstests konnte dies bestätigt werden. Durch die Einlagerung von TiO2-Partikeln konnte keine Verschlechterung der Korrosionseigenschaften festgestellt werden.  

Durch die Forschungsarbeiten steht interessierten KMU ein neuartiges photokatalytisch aktives Eloxalschichtsystem zur Verfügung, das u.a. für die Anwendung im Fassadenbereich verwendet werden kann. 

Danksagung

Das Forschungsvorhaben 20136 N der Forschungsvereinigung Verein für das Forschungsinstitut für Edelmetalle und Metallchemie (fem) wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz gefördert.

Energetische Nutzung von Abfallwasserstoff in Eloxalbetrieben

Einleitung 

ln Eloxalbetrieben entstehen an zwei Prozessstellen erhebliche Mengen an Wasserstoff, die bisher völlig ungenutzt in die Umgebungsluft abgegeben werden. Zum einen durch Aluminiumauflösung beim Beizen, zum anderen bei der nachfolgenden Anodisation. Der ungenutzte Wasserstoff soll zukünftig den immensen Bedarf an thermischer Energie für die kontinuierliche Beheizung der Prozessbäder (Sealing) liefern.

Umsetzung und Ergebnisse

Das FuE-Projekt verfolgte zunächst den Ansatz, den bei dem Anodisieren entstehenden Wasserstoff mit Umgebungsluft abzusaugen und gezielt in einem Wasserstoff-Luftgemisch mit weniger als 4,4 Vol.- % H2 (UEG) an einem platinierten Katalysatorgitter zu verbrennen. Die dabei entstehende Wärmeenergie soll unmittelbar über einen Wärmetauscher dem Sealingbad, das bei etwa 96 °C betrieben wird, zugeführt werden.

– Die Anreicherung des Wasserstoffs erfolgt mit einer zuvor erprobten Umhüllung der Kathoden aus Textilgewebe. Neben der lokalen Anreicherung des Wasserstoffs wird durch diese Maßnahme zudem der Anteil von Schwefelsäureaerosalen in der Umgebungsluft verringert. Die Raumluftbedingungen für Mitarbeiter (MAK: 0,1 mg/m3) im unmittelbaren Umfeld der Eloxalbäder lassen sich somit erheblich verbessern.

– In Abhängigkeit von der Stromdichte während der Anodisation sowie dem sich einstellenden H2-Luftgemisch können Temperaturen von bis zu 400 °C im Katalysatorraum erreicht werden. Bei einer unbedenklichen Wasserstoffkonzentration von etwa 4 Vol.-%  (UEG) werden immer noch Temperaturen um 200 °C gemessen.

– Für die Wahl geeigneter Kathodenmaterialien empfiehlt sich alternativ zu Aluminium auch Edelstahl (1.4031). Ein unerwünschter Aluminiumeintrag ins Eloxalbad wird unterbunden und eine Erneuerung durch Verbrauch von Aluminiumkathoden erübrigt sich.

Fazit

Im Rahmen dieses ZIM-Projektes konnte die industrielle, prozesssichere  Nutzung von Abfallwasserstoff im Eloxalbetrieb realisiert werden. Die nachfolgende Rechnung zeigt, dass die aufgezeigte Lösung die jährlichen Prozesskosten deutlich verringern kann. 

Bei der Anodisation von Aluminium entstehen pro Amperestunde 0,4 Liter Wasserstoff. Bei maximaler Auslastung aller Anodisierstationen (18 kA) der Fa. Riedel & Soelch GmbH können etwa 7 m3/h Wasserstoff erzeugt werden. Das entspricht einer Wärmeenergie von 21 kWh (Heizwert H2=3 kWh/m3). Beim vorhergehenden Beizprozess entstehen pro Quadratmeter Oberfläche zusätzlich etwa 186 Liter Wasserstoff in der Stunde. In Summe können im Zweischichtbetrieb mehr als 300m3 Wasserstoff beim Beizen und Anodisieren erzeugt werden, wodurch etwa 100 Liter Dieselöl eingespart werden können. Bei einem Heizölpreis von etwa 0,7 €/l entspricht dies einem Einsparpotential von etwa 17.000 € im Jahr.

Danksagung

Das Vorhaben ZIM ZF 4215103Z G6 der Forschungsvereinigung Edelmetalle und Metallchemie wurde über die AiF im Rahmen des Zentralen Innovationsprogramms Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Entwicklung von hoch korrosionsfesten und metallisierbaren Mehrschicht-Eloxal-Systemen im Labormaßstab

Das gemeinsame Projekt der Rieger Metallveredlung GmbH & Co. KG und dem fem zielt auf die Entwicklung einer korrosionsbeständigen und haftfesten Metallisierung von Eloxalschichten, die die steigenden Anforderungen des technischen Einsatzes erfüllen. Dazu wird am fem die Eloxalschicht als Mehrschichtsystem entwickelt, so dass Korrosionsfestigkeit und Haftfestigkeit jeweils einer separaten Schicht zugeordnet werden können. Als Voraussetzung für eine hohe Haftfestigkeit der Funktionsschicht wird neben der Mehrschichtcharakteristik auch die Bekeimung des Schichtsystems durch die Fa. Rieger entwickelt. 

Das Projekt zielt auf hochbeanspruchte Nischenanwendungen mit zunehmender Individualisierung in kleinen Losgrößen. Mit dem neuen Verfahren, das Korrosionsfestigkeit und Haftfestigkeit gleichermaßen berücksichtigt, eröffnet sich für unterschiedlichste Branchen ein weites Spektrum bei der Metallisierung von Eloxal-Schichten. Mit der industriellen Umsetzbarkeit erreicht der Stand der Technik für Verfahren zur Herstellung dekorativer, hochkorrosionsfester Schichten qualitativ eine neue Stufe.

Danksagung

Das Vorhaben der Forschungsvereinigung Edelmetalle und Metallchemie wird über die AiF im Rahmen des Zentralen Innovationsprogramms Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Innovative Schweißlösungen für additiv gefertigte Leichtbaukomponenten aus Aluminium (WeldAlAM)

Einer der Hauptkostentreiber bei heutigen Leichtbauanwendungen für Automobil- oder Luftfahrtkomponenten sind die Kosten für Rohmaterial, unabhängig von den Herstellungswegen. Komplexe Komponentendesigns und großformatige Teile erfordern lange Vorlaufzeiten und eine große Produktionsinfrastruktur. Bei der additiven Fertigung (AM) von großen Aluminiumteilen wird es immer schwieriger, eine homogene Materialqualität zu erschwinglichen Kosten zu gewährleisten. Sie können derzeit nicht mit der hohen und wiederholbaren Materialqualität und der niedrigen Kostenstruktur von Halbzeugen wie Strangpressprofilen und Blechen konkurrieren.

Die AM-Technologie zur Herstellung kleinerer Teile und deren Kombination mit Halbfertigprodukten bietet ein großes Potenzial zur Überwindung der oben genannten Anforderungen und hohen Kosten für große Teile. Sie eröffnet die Möglichkeit, Schnittstellen zu definieren, um diese Teile mit Halbzeugen durch industriell gut etablierte Fügetechniken wie das Wolfram-Lichtbogenschweißen (WIG) oder das Laserstrahlschweißen (LBW) zu verbinden.

Der Schwerpunkt des WeldAlAM-Projekts liegt auf der Bewertung der Schweißbarkeit von hochfesten Aluminium-AM-Teilen und der Validierung verschiedener Schweißtechnologien. Der Ansatz wird auf einer laborbasierten Ebene erfolgen, um die Verfahrensgrundsätze zu erforschen, gefolgt von einer Prototypenphase für zwei relevante Komponenten, die zusammen mit dem UC ausgewählt werden.

Das EB-Schweißen stellt eine Referenz für das Strahlschweißen dar, und das GTAW-Schweißen ist als Grundlage für herkömmliche Lichtbogenschweißverfahren gedacht. LBW und Rührreibschweißen werden entwickelt, um Probleme mit Porosität und Schweißbarkeit zu überwinden. Die Untersuchung wird durch zerstörungsfreie Prüfungen sowie die metallographische Charakterisierung der AM-Teile und Schweißnähte abgedeckt. Zusätzlich sind Oberflächenbehandlungen und Korrosionstests geplant, um die Teile für zukünftige Leichtbauanwendungen zu qualifizieren. Die KMU werden von der Aufstellung von Regeln für gute Praktiken” für verschiedene Industriezweige profitieren, außerdem profitieren die KMU von der Forschung zu oberflächenbehandelten Aluminiumteilen.

FÖRDERUNG

Innovative Schweißlösungen für additiv gefertigte Leichtbauteile aus Aluminium (WeldAlAM) ist ein Cornet-Projekt, das von nationalen Agenturen, die dem Cornet-Netzwerk angehören, finanziert wird.

Fraunhofer IWS / Dirk Dittrich / +49 351 83391-3228 / dirk.dittrich(at)iws.fraunhofer.de

fem Forschungsinstitut / Dario Tiberto / +49 7171 1006-714 / tiberto(at)fem-online.de

sirris / Olivier Rigo / +32 498 91 94 71 / olivier.rigo(at)sirris.be

CRM Group / Petra Svarova / petra.svarova(at)crmgroup.be